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Summary

A moment method solution procedure for rotationally
symmetric dielectric bodies has been applied to isola-
ted cylindrical dielectric resonators, and the fre-
quencies as well as Q factors due to radiation have
been determined for several of the lowest modes
including those of hybrid type.
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The advantages of dielectric resomators are their small
size, low cost, and good temperature stability. One of
the important disadvantages is a proximity of resonant
frequencies of various modes., It is therefore of great
practical importance to know the resonant frequency and
the field pattern not only for the desired mode of op-
eration (usually TEgjgq) but also for other, undesired
modes. The numerical procedure reported here is ca-
pable of providing accurate values of resonant frequen-—
cies and Q factors for all the modes of interest.

Exact field solutions for dielectric resonators are
presently available only for the modes with no azimuth-
al variation (first subscript wm=0), and for resonators
which conform to a cylindrical system of coordinates
[1] to [4]. The higher modes (m#0) have been included
in a study of scattering from rotationally symmetric
bodies by Barber, et al. [5]. However, their procedure,
which employs the extended boundary condition method,
has not yet been applied to the study of dielectric
resonators. In this paper we utilize the method of
moments for the analysis of dielectric resonators. The
method is applicable for dielectric bodies of revolu-
tion with arbitrary cross section and for any azimuthal
variation (including hybrid modes with m#0). Our
approach is based on the solution of a surface integral
equation. It offers several computational advantages
over finite difference equation or volume integral
equation approaches, particularly when the resonator is
not enclosed in a metal boundary, such as in the case
of isolated resonators.

The surface integral equation for bodies of revolution
has been formulated in [6]. The scattering problem of
a rotational body illuminated by an incident field is
shown in Fig. l. The continuity of the electric and
magnetic fields tangential to the surface requires

~EGW + BGm, - Etgi (1)
SEGW) + AW, = 'ﬁt;‘g , (2)

where J and M are equivalent electric and magnetic sur-
face currents. The electric and magnetic fields on the
left-hand side are next expressed in terms of the elec—
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tric and magnetic vector and scalar potentials. The
rotational symmetry of the body is utilized by expand-
ing all the fields and surface currents in Fourier
series in ¢. For example

B, = ] ECmeI™ (3)
M=o

Application of the method of moments then yields a set
of simultaneous equations which may be represented in
matrix form for each Fourier component as

zl1> = |v> (4)

where Z is the moment matrix, |V> is the forcing vec-
tor, and |I> is the column vector containing the sur-
face current coefficients to be determined. Since
there are two currents (electric and magnetic), and two
vector components (along t and along ¢) of each cur-—
rent, in total there are approximately four unknown
surface current coefficients for each point used to
define the generating arc of the body of revolution.

The individual resonant modes are found by solving the
homogeneous system (eq. (4), with |V> =|0>) for a par-

ticular Fourier component m. Thus the determinant of
the moment matrix % must be zero:

det (2) =0 (5)
The complex roots of (5) are
s =68+ jw (6)
n n n

In the above, W, is the resonant frequency of the mode
(m,n) and S, is inversely proportional to the radiation
Q factor:

£

n
Q=75 7
n

In Fig. 2, the relative value of the determinant (for
m=0) is plotted for a cylindrical dielectric resonator
of radius a=5 mm, length h=5 mm and dielectric constant
€r=35. The generating arc of the body of revolution is
described by 7 points (Z is a 22 X 22 matrix), and the
complex frequency s, in (6) is purely imaginary. 1In
the range between 2 GHz and 8 GHz two distinct minima
of the absolute value of the determinant are visible,
one at 5.1 GHz and the other at 7.6 GHz. With the use
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of diagrams from Gelin et al. {4], the two modes can be
identified as TEp)gs and TMy;s.

More accurate values of the resonant frequencies as
well as the values of the corresponding Q factors can
next be determined by extending the search for roots to
the complex frequency plane. It has been found that,
by utilizing separately the real and imaginary parts of
the determinant, a simple linear search procedure is
possible. Therefore, it was decided to use this type
of search procedure for finding the exact position of
roots on the complex plane. Each step in the linear
search requires only 3 points, and no more than three
consecutive steps have been necessary. The numerical
convergence was studied by increasing the number of
points N on the generating arc from 7 (22 unknowns) to
25 (94 unknowns). The results for the TEglg mode are
shown in Table I. It is seen that the radiation Q fac-—
tor is more sensitive to the number of unknowns than
the resonant frequency. When f and Q from Table I are
plotted vs. 1/N, one can linearly extrapolate the
values to the case N-w. These limit values are pre-
sented in the last column of Table I. Agreement of the
frequency with reference [4] is better than 1%, while
the extrapolated Q factor is lower, coming closer to
the values given by [7].

The power of our numerical technique is demonstrated in
Fig. 3. By simply changing the input parameter to m=1,
the same resonator as before yields the determinant
values such as shown in the figure. The modes are now
hybrid. By observing the minima of the absolute value,
one can clearly identify two resonances, one at 6.3 GHz
and another at 7.1 GHz, belonging to modes HEMj1g and
HEM] 95 .

The example which follows is computed for a JFD reso-
nator, type DRD 105 UD 046, with €,=38, h=4.6 mm and
a=5.25 mm. The number of points used to model the con-
tour is N=13, and the computed values of f and Q are
listed in Table II for the lowest four modes.

The experimental verification of the resonant frequency
and the Q factor was performed with a network anlyzer,
by using the transmission method. The resonator was
situated in a box padded with absorbing material. The
results of measurement are also shown in Table II. The
agreement in resonant frequency is about 1%, while the
agreement in Q factor is about 20%, except for the mode
HEMy15. As the transmission method is not very reli-
able for the Q measurement, the reflection method was
also attempted. It proved to be difficult to obtain
sufficient coupling to the coaxial line, especially for
the modes with low Q factor. For the two modes where
the reflection measurement was possible, the agreement
with computed values was good, as can be seen from the
last column in Table IT.

Encouraged with this experimental verification of the
numerical procedure, we computed the universal mode
chart for cylindrical dielectric resonators with g,=38.
The chart is shown in Fig. 4, displaying the value of
koa vs. the ratio a/h. 1In order to economize the com-—
puter time, the resonant frequencies were determined by
simply observing the minimum of the determinant on the
imaginary axis of the complex plane. The minimum num-
ber of points modeling the cylinder was N=13, but it
was necessary to increase it for certain values of a/h.
Such changes of N are the reason for slight kinks on
the curves shown.

It is seen that for the range a/h between 0.3 and 3,
the mode TEp)§ is the dominant mode. Also, it is note-
worthy to observe that the resonant frequencies of the
modes TMgjs and HEMp)g are running inconveniently close
to each other over a wide range of values a/h. The
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classification of modes in the figure is done by com-
paring the resonant frequencies with the eigenvalues of
the dielectric rod waveguide [8]. Admittedly, this is
an approximate identification technique, and the second
subscript of some modes may be in error. In the fu-
ture, it is planned to compute the local field distri-
bution in the resonator at each of the complex resonaat
frequencies. Such a detailed field distribution will
hopefully enable us to make a positive mode
identification.
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Table I

Convergence of results for TE016 mode (€r=35)

N 7 13 19 25 L
f 5.0863 5.0931 5.1027 5.1077 5.124
Q 73.76 45.19 41.37 39.78 34.0




Table II A5
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Fig. 3 Determinant vs. Frequency, m=l.
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Fig. 2 Determinant vs. Frequency, m=0.
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