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Summary

A moment method solution procedure for rotationally

symmetric dielectric bOdies has been applied to isola-
ted cylindrical dielectric resonators, and the fre-

quencies as well as Q factors due to radiation have
been determined for several of the lowest modes
including those of hybrid type.

***

Tne advantages of dielectric resonators are their small

size, low cost, and good temperature stability. One of
the important disadvantages is a proximity of resonant

frequencies of various modes, It is therefore of great
practical importance to know the resonant frequency and

the field pattern not only for the desired mode of op-
eration (usually TE~ld) but also for other, undesired

modes. The numerical procedure reported here is ca-
pable of providing accurate values of resonant frequen-

cies and Q factors for all the modes of interest.

Exact field solutions for dielectric resonators are

presently available only for the modes with no azimuth-
al variation (first subscript m=O), and for resonators

which conform to a cylindrical system of coordinates

[11 to [4]. The higher modes (m#O) have been included
in a study of scattering from rotationally symmetric

bodies by Barber, et al . [5]. However, their procedure,
which employs the extended boundary condition method,

has not yet been applied to the study of dielectric
resonators . In this paper we utilize the method of
moments for the analysis of dielectric resonators. The
method is applicable for dielectric bodies of revolu-

tion with arbitrary cross section and for any azimuthal
variation (including hybrid modes with m#O). Our

approach is based on the solution of a surface integral
equation. It offers several computational advantages

over finite difference equation or volume integral

equation approaches, particularly when the resonator is

not enclosed i-n a metal boundary, such as in the case

of isolated resonators.

The surface integral equation for bodies of revolution

has been formulated in [6]. The scattering problem of

a rotational body illuminated by an incident field is

shown in Fig. 1. The continuity of the electric and
magnetic fields tangential to the surface requires

-[;(7,1) +Xs(:,li)]tan .E& (1)

-[E(:,fi) +ir(:,i)]tan .F& , (2)

where ~ and ~ are equivalent electric and magnetic sur-

face currents. The electric and magnetic fields on the
left-hand side are next expressed in terms of the elec-

tric and magnetic vector and scalar potentials. The

rotational symmetry of the body is utilized by expand-

ing all the fields and surface currents in Fourier

series in $. For example

‘inc(t,$) =j< ;~(t)ejmoE (3)

Application of the method of moments then yields a set

of simultaneous equations which may be represented in

matrix form for each Fourier component as

(4)

where ~ is the moment matrix, IV> is the forcing vec-

tor , and II> is the column vector containing the sur-

face current coefficients to be determined. Since
there are two currents (electric and magnetic), and two
vector components (along t and along ~) of each cur-

rent , in total there are approximately four unknown
surface current coefficients for each point used to

define the generating arc of the body of revolution.

The individual resonant modes are found by solving the

homogeneous system (eq. (4), with IV> ‘IO>) for a par-
ticular Fourier component m. Thus the determinant of
the moment matrix ; must be zero:

det (~) = O (5)

The complex roots of (5) are

s =&n+ju (6)
n n

In the above, tin is the resonant frequency of the mode

(m,n) and 6n is inversely proportional to the radiation
Q factor:

&l

Qn=+
n

(7)

In Fig. 2, the relative value of the determinant (for
m=o) is plotted for a cylindrical dielect.ri.c resonator

of radius a=5 mm, length h=5 mm and dielectric constant

Er=35. The generating arc of the body of revolution is
described by 7 points (< is a 22 x 22 matrix), and the

complex frequency Sn in (6) is purely imaginary. In
the range between 2 GHz and 8 GHz two distinct minima

of the absolute value of the determinant are visible,
one at 5.1 GHz and the other at 7.6 GHz. With the use
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yf diag~ams from Gelin~ al. [4], the two modes can be

ldentlfled as TEOld and TMOl&.

More accurate values of the resonant frequencies as

well aa the values of the corresponding Q factors can
next be determined by extending the search for roots to

the complex frequency plane. It has been found that,
by utilizing separately the real and imaginary parts of

the determinant, a simple linear search procedure is
possible. Therefore, it was decided to use this type

of search procedure for finding the exact position of
roots on the complex plane. Each step in the linear
search requires only 3 points, and no more than three

consecutive steps have been necessary. The numerical
convergence was studied by increasing the number of

points N on the generating arc from 7 (22 unknowns) to
25 (94 unknowns). The results for the TEOl& mode are
shown in Table I. It is seen that the radiation Q fac–
tor is more sensitive to the number of unknowns than
the resonant frequency. When f and Q from Table I are

plotted va. I/N, one can linearly extrapolate the

values to the case Wm. These limit values are pre–
aented in the last column of Table 1. Agreement of the
frequency with reference [4] is better than 1%, while

the extrapolated Q factor is lower, coming closer to

the values given by [7].

The power of our numerical technique is demonstrated in

Fig. 3. By simply changing the input parameter to m=l,
the same resonator as before yields the determinant

values such as shown in the figure. The modes are now
hybrid . By observing the minima of the absolute value,

one can clearly identify two resonances, one at 6.3 GHz
and another at 7.1 GHz, belonging to modes HEMIId and

HEM12~ .

The example which follows is computed for a JFD reso–

nator, type DRD 105 UD 046, with Sr=38, h=4.6 mm and
a=5.25 mm. The number of points used to model the con-
tour is N=13, and the computed values of f and Q are

listed in Table II for the lowest four modes.

The experimental verification of the resonant frequency

and the Q factor was performed with a network anlyzer,

by using the transmission method. The resonator was

situated in a box padded with absorbing material. The
results of measurement are also shown in Table 11. The
agreement in resonant frequency is about 1%, while the

agreement in Q factor is about 20%, except for the mode
HEM216 . As the transmission method is not very reli-
able for the Q measurement, the reflection method was

also attempted. It proved to be difficult to obtain
sufficient coupling to the coaxial line, especially for

the modes with low Q factor. For the two modes where
the reflection measurement was possible, the agreement

with computed values was good, aa can be seen from the

laat column in Table II.

Encouraged with this experimental verification of the
numerical procedure, we computed the universal mode
chart for cylindrical dielectric resonators with Er=38.

The chart is shown in Fig. 4, displaying the value of
koa vs. the ratio ajh. In order to economize the com-
puter time, the resonant frequencies were determined by
simply observing the minimum of the determinant on the
imaginary axis of the complex plane. The minimum num-
ber of points modeling the cylinder was N=13, but it
was necessary to increase it for certain values of a/h.

Such changes of N are the reason for slight kinks on

the curves shown.

classification of modes in the figure is done by com-

paring the resonant frequencies with the eigenvalues of
the dielectric rod waveguide [8]. Admittedly, this is

an approximate identification technique, and the second
subscript of some modes may be in error. In the fu–

ture, it is planned to compute the local field distri-

bution in the resonator at each of the complex resonant
frequencies. Such a detailed field distribution will

hopefully enable us to make a positive mode
identification.
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Table I

Convergence of results for TEold mode (&r=35)

!

f 5.0863 5.0931 5.1027 5.1077 5.124

Q 73.76 45.19 41.37 39.78 34.0

It is seen that for the range a/h between 0.3 and 3,

the mode TEOl& ia the dominant mode. Also, it is note-
worthy to observe that the resonant frequencies of the

modes TM016 and HEM216 are running inconveniently close

to each other over a wide range of values a/h. The
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Comparison

FMode

‘E016

‘EM1215

‘“o 1d

‘EM21!5

Table II

of computed and measured results (&r=38)

Computed

f(GHz)

4.82

6.63

7.51

7.75

Q

48.5

51.9

77.0

?91.0

—-—

(is>is)

Measured

f(GHz) Q(transm.)

4.85

1

51

6.64 64

7.60 86

7.81 204

A’

~

Q(refl.)
———_

47
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Fig. 1 Rotationally Symmetric Body Illuminated

By An Incident Plane Wave.
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